

FlexMatcher Documentation

[image: _images/flexmatcher.svg]
 [https://pypi.python.org/pypi/flexmatcher][image: _images/flexmatcher1.svg]
 [https://travis-ci.org/biggorilla-gh/flexmatcher][image: Documentation Status]
 [https://flexmatcher.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/biggorilla-gh/flexmatcher/]FlexMatcher is a schema matching package in Python which handles the problem
of matching multiple schemas to a single mediated schema. FlexMatcher is
part of the BigGorilla <http://biggorilla.org> project which provides tools
for data integration and data preparation.

	Free software: Apache Software License 2.0

Contents:

	Installation
	Stable release

	From sources

	Examples

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

Installation

Stable release

To install FlexMatcher, run this command in your terminal:

$ pip install flexmatcher

This is the preferred method to install FlexMatcher, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for FlexMatcher can be downloaded from the Github repo [https://github.com/biggorilla-gh/flexmatcher].

You can either clone the public repository:

$ git clone git://github.com/biggorilla-gh/flexmatcher

Or download the tarball [https://github.com/biggorilla-gh/flexmatcher/tarball/master]:

$ curl -OL https://github.com/biggorilla-gh/flexmatcher/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Examples

Imagine that we have two datasets on movies provided in pandas dataframe
format. Let’s say that we are interested in three attributes, namely ‘movie_name’,
‘movie_year’ and ‘movie_rating’. The name of columns in the two datasets may
differ form the names that we just listed. Let’s say that we look into the first
two dataset and specify how each column maps to one of the three attributes
that is of interest to us.:

vals1 = [['year', 'Movie', 'imdb_rating'],
 ['2001', 'Lord of the Rings', '8.8'],
 ['2010', 'Inception', '8.7'],
 ['1999', 'The Matrix', '8.7']]
header = vals1.pop(0)
data1 = pd.DataFrame(vals1, columns=header)
creating the second dataset
vals2 = [['title', 'produced', 'popularity'],
 ['The Godfather', '1972', '9.2'],
 ['Silver Linings Playbook', '2012', '7.8'],
 ['The Big Short', '2015', '7.8']]
header = vals2.pop(0)
data2 = pd.DataFrame(vals2, columns=header)
specifying the mappings for the first and second datasets
data1_mapping = {'year': 'movie_year',
 'imdb_rating': 'movie_rating',
 'Movie': 'movie_name'}
data2_mapping = {'popularity': 'movie_rating',
 'produced': 'movie_year',
 'title': 'movie_name'}

Now, let’s assume that we are given a thirs dataset.:

creating the third dataset
vals3 = [['rt', 'id', 'yr'],
 ['8.5', 'The Pianist', '2002'],
 ['7.7', 'The Social Network', '2010']]
header = vals3.pop(0)
data3 = pd.DataFrame(vals3, columns=header)

We can use flexmatcher to find how the columns in the new dataset
are related to the attributes of our interest. To do so, we need to
create an instance of FlexMatcher, make a list of available datasets
and their mappings to the desired attributes, and train the FlexMatcher.:

schema_list = [data1, data2]
mapping_list = [data1_mapping, data2_mapping]
fm = flexmatcher.FlexMatcher(schema_list, mapping_list, sample_size=100)
fm.train()

Then, we can use the trained FlexMatcher to predict the mappings for the
third dataset as follows.:

predicted_mapping = fm.make_prediction(data3)

The result is a dictionary that maps every column to an attribute. For instance,:

>>> print(predicted_mapping['rc'])
movie_rating

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/biggorilla-gh/flexmatcher/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

FlexMatcher could always use more documentation, whether as part of the
official FlexMatcher docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/biggorilla-gh/flexmatcher/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up flexmatcher for local development.

	Fork the flexmatcher repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/flexmatcher.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv flexmatcher
$ cd flexmatcher/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 flexmatcher tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/biggorilla-gh/flexmatcher/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_flexmatcher

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flexmatcher	

 	
 	
 flexmatcher.classify	

 	
 	
 flexmatcher.classify.charDistClassifier	

 	
 	
 flexmatcher.classify.classifier	

 	
 	
 flexmatcher.classify.nGramClassifier	

 	
 	
 flexmatcher.flexmatcher	

 	
 	
 flexmatcher.utils	

 	
 	
 flexmatcher.utils.customAnalyzer	

Index

 C
 | F
 | M
 | N
 | P
 | S
 | T

C

 	
 	CharDistClassifier (class in flexmatcher.classify.charDistClassifier)

 	Classifier (class in flexmatcher.classify.classifier)

 	
 	columnAnalyzer() (in module flexmatcher.utils.customAnalyzer)

 	create_training_data() (flexmatcher.flexmatcher.FlexMatcher method)

F

 	
 	fit() (flexmatcher.classify.charDistClassifier.CharDistClassifier method)

 	(flexmatcher.classify.classifier.Classifier method)

 	(flexmatcher.classify.nGramClassifier.NGramClassifier method)

 	FlexMatcher (class in flexmatcher.flexmatcher)

 	flexmatcher (module)

 	flexmatcher.classify (module)

 	
 	flexmatcher.classify.charDistClassifier (module)

 	flexmatcher.classify.classifier (module)

 	flexmatcher.classify.nGramClassifier (module)

 	flexmatcher.flexmatcher (module)

 	flexmatcher.utils (module)

 	flexmatcher.utils.customAnalyzer (module)

M

 	
 	make_prediction() (flexmatcher.flexmatcher.FlexMatcher method)

N

 	
 	NGramClassifier (class in flexmatcher.classify.nGramClassifier)

P

 	
 	predict() (flexmatcher.classify.charDistClassifier.CharDistClassifier method)

 	(flexmatcher.classify.classifier.Classifier method)

 	(flexmatcher.classify.nGramClassifier.NGramClassifier method)

 	predict_proba_ordered() (flexmatcher.classify.charDistClassifier.CharDistClassifier method)

 	(flexmatcher.classify.nGramClassifier.NGramClassifier method)

 	
 	predict_training() (flexmatcher.classify.charDistClassifier.CharDistClassifier method)

 	(flexmatcher.classify.classifier.Classifier method)

 	(flexmatcher.classify.nGramClassifier.NGramClassifier method)

S

 	
 	save_model() (flexmatcher.flexmatcher.FlexMatcher method)

T

 	
 	train() (flexmatcher.flexmatcher.FlexMatcher method)

 	
 	train_meta_learner() (flexmatcher.flexmatcher.FlexMatcher method)

Credits

Development Lead

	BigGorilla Team <thebiggorilla.team@gmail.com>

Contributors

None yet, but why not be the first?

flexmatcher.classify package

Submodules

flexmatcher.classify.charDistClassifier module

	
class flexmatcher.classify.charDistClassifier.CharDistClassifier

	Bases: flexmatcher.classify.classifier.Classifier

Classify the data-point using counts of character types in the data.

The CharDistClassifier extracts 7 simple features: number of
white-space, digit, and alphabetical characters as well as their percentage
and the total number of characters. Then it trains a logistic regression on
top of these features.

	Attributes:

	labels (ndarray): Vector storing the labels of each data-point.
features (ndarray): Matrix storing the extracting features.
clf (LogisticRegression): The classifier instance.
num_classes (int): Number of classes/columns to match to
all_classes (ndarray): Sorted array of all possible classes

	
fit(data)

	Extracts features and labels from the data and fits a model.

	Args:

	data (dataframe): Training data (values and their correct column).

	
predict(data)

	Predict the class for a new given data.

	Args:

	data (dataframe): Dataframe of values to predict the column for.

	
predict_proba_ordered(probs, classes)

	Fills out the probability matrix with classes that were missing.

	Args:

	probs (list): list of probabilities, output of predict_proba
classes_ (ndarray): list of classes from clf.classes_
all_classes (ndarray): list of all possible classes

	
predict_training(folds=5)

	Do cross-validation and return probabilities for each data-point.

	Args:

	folds (int): Number of folds used for prediction on training data.

flexmatcher.classify.classifier module

Implement classifier for FlexMatcher.

This module defines an interface for classifiers.

	Todo:

	
	Implement more relevant classifiers.

	Implement simple rules (e.g., does data match a phone number?).

	Shuffle data before k-fold cutting in predict_training.

	
class flexmatcher.classify.classifier.Classifier(data)

	Bases: object

Define classifier interface for FlexMatcher.

	
fit(data)

	Train based on the input training data.

	
predict(data)

	Predict for unseen data.

	
predict_training(folds)

	Predict the training data (using k-fold cross validation).

flexmatcher.classify.nGramClassifier module

	
class flexmatcher.classify.nGramClassifier.NGramClassifier(ngram_range=(1, 1), analyzer='word', count=True, n_features=200)

	Bases: flexmatcher.classify.classifier.Classifier

Classify data-points using counts of n-gram sequence of words or chars.

The NGramClassifier uses n-grams of words or characters (based on user
preference) and extracts count features or binary features (based on user
preference) to train a classifier. It uses a LogisticRegression
classifier as its training model.

	Attributes:

	labels (ndarray): Vector storing the labels of each data-point.
features (ndarray): Matrix storing the extracting features.
vectorizer (object): Vectorizer for transforming text to features. It
will be either of type CountVectorizer or HashingVectorizer.
clf (LogisticRegression): The classifier instance.
num_classes (int): Number of classes/columns to match to
all_classes (ndarray): Sorted array of all possible classes

	
fit(data)

	
	Args:

	data (dataframe): Training data (values and their correct column).

	
predict(data)

	Predict the class for a new given data.

	Args:

	data (dataframe): Dataframe of values to predict the column for.

	
predict_proba_ordered(probs, classes)

	Fills out the probability matrix with classes that were missing.

	Args:

	probs (list): list of probabilities, output of predict_proba
classes_ (ndarray): list of classes from clf.classes_
all_classes (ndarray): list of all possible classes

	
predict_training(folds=5)

	Do cross-validation and return probabilities for each data-point.

	Args:

	folds (int): Number of folds used for prediction on training data.

Module contents

flexmatcher.utils package

Submodules

flexmatcher.utils.customAnalyzer module

	
flexmatcher.utils.customAnalyzer.columnAnalyzer(text)

	

Module contents

flexmatcher package

Subpackages

	flexmatcher.classify package
	Submodules

	flexmatcher.classify.charDistClassifier module

	flexmatcher.classify.classifier module

	flexmatcher.classify.nGramClassifier module

	Module contents

	flexmatcher.utils package
	Submodules

	flexmatcher.utils.customAnalyzer module

	Module contents

Submodules

flexmatcher.flexmatcher module

Implement FlexMatcher.

This module is the main module of the FlexMatcher package and implements the
FlexMatcher class.

	Todo:

	
	Extend the module to work with and without data or column names.

	Allow users to add/remove classifiers.

	Combine modules (i.e., create_training_data and training functions).

	
class flexmatcher.flexmatcher.FlexMatcher(dataframes, mappings, sample_size=300)

	Bases: object

Match a given schema to the mediated schema.

The FlexMatcher learns to match an input schema to a mediated schema.
The class considers panda dataframes as databases and their column names as
the schema. FlexMatcher learn to do schema matching by training on
instances of dataframes and how their columns are matched against the
mediated schema.

	Attributes:

	
	train_data (dataframe): Dataframe with 3 columns. The name of

	the column in the schema, the value under that column and the name
of the column in the mediated schema it was mapped to.

	col_train_data (dataframe): Dataframe with 2 columns. The name

	the column in the schema and the name of the column in the mediated
schema it was mapped to.

data_src_num (int): Store the number of available data sources.
classifier_list (list): List of classifiers used in the training.
classifier_type (string): List containing the type of each classifier.

Possible values are ‘column’ and ‘value’ classifiers.

	prediction_list (list): List of predictions on the training data

	produced by each classifier.

	weights (ndarray): A matrix where cell (i,j) captures how good the j-th

	classifier is at predicting if a column should match the i-th
column (where columns are sorted by name) in the mediated schema.

columns (list): The sorted list of column names in the mediated schema.

	
create_training_data(dataframes, mappings, sample_size)

	Transform dataframes and mappings into training data.

The method uses the names of columns as well as the data under each
column as its training data. It also replaces missing values with ‘NA’.

	Args:

	dataframes (list): List of dataframes to train on.
mapping (list): List of dictionaries mapping columns of dataframes

to columns in the mediated schema.

	sample_size (int): The number of rows sampled from each dataframe

	for training.

	
make_prediction(data)

	Map the schema of a given dataframe to the column of mediated schema.

The procedure runs each classifier and then uses the weights (learned
by the meta-trainer) to combine the prediction of each classifier.

	
save_model(name)

	Serializes the FlexMatcher object into a model file using python’s
picke library.

	
train()

	Train each classifier and the meta-classifier.

	
train_meta_learner()

	Train the meta-classifier.

The data used for training the meta-classifier is the probability of
assigning each point to each column (or class) by each classifier. The
learned weights suggest how good each classifier is at predicting a
particular class.

Module contents

History

0.9.0 (2017-05-12)

	First release on PyPI.

flexmatcher

	flexmatcher package
	Subpackages
	flexmatcher.classify package
	Submodules

	flexmatcher.classify.charDistClassifier module

	flexmatcher.classify.classifier module

	flexmatcher.classify.nGramClassifier module

	Module contents

	flexmatcher.utils package
	Submodules

	flexmatcher.utils.customAnalyzer module

	Module contents

	Submodules

	flexmatcher.flexmatcher module

	Module contents

FlexMatcher

[image: _images/flexmatcher.svg]
 [https://pypi.python.org/pypi/flexmatcher][image: _images/flexmatcher1.svg]
 [https://travis-ci.org/biggorilla-gh/flexmatcher][image: Documentation Status]
 [https://flexmatcher.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/biggorilla-gh/flexmatcher/]FlexMatcher is a schema matching package in Python which handles the problem of matching multiple schemas to a single mediated schema.

	Free software: Apache Software License 2.0

	Documentation: https://flexmatcher.readthedocs.io.

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 FlexMatcher Documentation

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Examples

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

